LETS BUILD AN EFFECTS PEDAL DIY AUDIO ELECTRONICS

University of Lethbridge

WHY DIY?

CIRCUIT BASICS

- A circuit contains a power supply and something for electricity to flow through.
- A power supply provides voltage to a circuit (measured in Volts (V))
- A power supply will have a + and connection.
- In a circuit, electricity flows from the point of high voltage to the point of lower voltage.
- If we don't have a complete connection from + to -, no electricity will flow. The circuit will not work.
- The flow of electricity in a completed circuit is called Current.and is measured in Amps (A).

THE CIRCUIT

THE PCB

THE TOOLS

Soldering Iron

Wire Strippers

Flush Cutter

\$35.00

The Magic that Makes Things Happen

RESISTORS

- Resist the flow of electricity between two points.
- \blacktriangleright Resistors are measured in Ohms Ω
- 100Ω Doesn't resist much.
- 4.7kΩ Resists a bit. (also written 4k7Ω)
- 1MΩ Resists a lot.

Resistors come in different sizes and power ratings. Unless otherwise stated, 1/4W or 1/8W are fine for hobby electronics.

RESISTORS

IDENTIFYING RESISTORS

DigiKey Corporation

RESISTORS IDENTIFYING RESISTORS

"There's an app for that."

VARIABLE RESISTORS

- Also known as Potentiometers, Pots, Trimpots, Trimmers.
- Function the same as a resistor but their value is variable.
- Variable Resistors can have a different taper (A, B, C). The taper will effect how quickly the value will change as you increase or decrease resistance (turn the knob).

VARIABLE RESISTORS

Taper	Label	Description
Log (audio)	А	Resistance increases slowly at first, quicker near the end.
Linear	В	Steady resistance change as you increase resistance.
Reverse-Log	С	Quick change in the beginning, slower near the end.

Knob Rotation

CAPACITORS

- Much like a battery, they store energy.
- Measured in Farads F
 - pico Farads pF small
 - nano Farads nF medium
 - micro Farads uF large

Electrolytic (Radial)

Film (Box Type)

Ceramic

CAPACITORS ELECTROLYTIC

- Electrolytic capacitors have polarity. A negative and positive side. The negative side is normally marked with a (-) symbol and a shorter lead.
- Placing electrolytic capacitors in backwards can cause them to overheat and **possibly burst**.
- Capacitance and voltage values are written on the component. Always buy capacitors with a voltage rating higher than your circuit.
- Usually measured in uF.
- Can be written as 4.7*uF* or 4*u*7.

CAPACITORS

METAL FILM (BOX TYPE)

- Metal Film (Box Type) do not have polarity. There is no wrong direction to place them in a circuit.
- Usually measured in nF or simply n.
- Can be written as 4.7n or 4n7.

CAPACITOR CODES

Film (Box Type) *nF*

Fixed

CAPACITORS

CERAMIC

- Ceramic capacitors do not have polarity. There is no wrong direction to place them in a circuit.
- Usually measured in pF.

CAPACITOR CODES

=

100,000pF

Ceramic

LEDS

- LEDs have polarity. They will only work one way.
- If inserted backwards it will break the circuit and stop the flow of electricity. It will not light up.
- Short lead with flat side indicates the negative side.
- If they receive too much current, they will burn up.
 Sometimes adding a resistor is necessary to regulate the current or can be added to decrease brightness.

DIODES

- Diodes are like LEDs but they do not light up.
- Only allows current to flow in one direction.
- Diodes have polarity. The (-) negative lead is indicated by a stripe on the diode.

1N913

1N4001

ICs (INTEGRATED CIRCUITS)

- ICs are chips that contain miniature circuits.
- These have polarity. The notch indicates it's direction in the circuit.
- ICs can be delicate. Soldering ICs directly to PCBs can cause them to overheat and break. Socketing ICs is generally recommended.
- Common ICs for guitar pedals and audio electronics are OpAmps (Operational Amplifiers). They amplify signals.

IC Chip

SWITCHES

- A switch connects or disconnects a wire.
- Switches are defined by how many **poles** and how many throws they have.

POWER SUPPLY

- Every circuit need external power. 2.1mm socket seems to be a standard.
- Easier and more reliable than using batteries.
- 3 Prongs. +, and a switch to optionally connect a battery snap.

JACKS

Mono 1/4" Jacks.

WIRE

- 24 AWG Stranded wire seems to be the best size for PCBs and hobby electronics.
- Solid core wire tends to stay in a fixed position better than Stranded but is prone to breaking when flexed too much.
- Stranded wire is very flexible and easy to manipulate.
- It's good practice to use different colours of wire throughout your project. It makes troubleshooting issues easier.

SOURCING COMPONENTS & ENCLOSURES

- Tayda Electronics (<u>taydaelectronics.com</u>) Great for resistors, caps, transistors, switches)
- Small Bear Electronics (<u>smallbear-electronics.mybigcommerce.com</u>) Rare components. Switches.
- Pedal Parts Plus (<u>pedalpartsplus.com</u>) Enclosures and knobs.
- Mammoth Electronics (<u>mammothelectronics.com</u>)
- Mouser (<u>ca.mouser.com</u>) Has everything but is quite difficult to navigate.
- DigiKey (<u>digikey.ca</u>)
- Ebay (<u>ebay.ca</u>) watch out for counterfeit ICs and 3PDT switches. Great for cheap, bulk components.

KITS & PCBS

- madbeanpedals (<u>madbeanpedals.com/</u>)
- SynthCube (<u>synthcube.com</u>)
- Build Your Own Clone (<u>buildyourownclone.com</u>)
- Modular Addict (<u>modularaddict.com</u>)
- SynthroTek (<u>synthrotek.com</u>)
- Aion Electronics (<u>https://aionelectronics.com/diy-pcb-projects/</u>)
- 1776 Effects (<u>http://1776effects.com</u>)

ENCLOSURES

- The box you package your project in.
- Standard enclosure sizes include 1590A, 1590B, 1590BB, 1590D, 125BB.
- Most PCBs purchased will recommend an enclosure size and provide a drilling template.
- When drilling your own enclosures, a Step Bit is your best friend.

Step Bits & Punch Tool

- There are many different ways to personalize your project.
 - Painting (Buy them pre-painted).
 - Water Slide Decals
 - Acid Etching (Ferric Chloride)
 - Laser Etching
 - Fabric
 - Markers
 - Repurposing old electronics enclosures

Fabric Enclosure Sealed with Modge Podge

Paint & Water Slide Decals

Etching

Enclosure Flair

Knobs.

- Get them cheap on eBay. They will likely be plastic.
- Reappropriate knobs from old/broken gear.
- There can be different size shafts on potentiometers.
- Switch Caps
- LED Bezels

Get some inspiration: <u>http://www.madbeanpedals.com/forum/buildreports</u>

HELP & TROUBLESHOOTING

- MadbeanPedals Forum (<u>madbeanpedals.com/forum/</u>)
- FreeStompBoxes (<u>freestompboxes.org</u>)
- All About Circuits (<u>allaboutcircuits.com</u>)
- SparkFun (<u>learn.sparkfun.com</u>)
- Adafruit (<u>learn.adafruit.com</u>)

SOLDERING

Be strategic about soldering your components onto the PCB. Start with the lowest profile components working your way up.

ORDER OF SOLDERING COMPONENTS

- Resistors
- Diodes
- IC Sockets
- Ceramic Capacitors
- Box Type Capacitors
- Electrolytic (Radial) Capacitors

SOLDERING

Do: Touch the iron to the component leg and metal ring at the same time.

Do: While continuing to hold the iron in contact with the leg and metal ring, feed solder into the joint.

Don't: Glob the solder straight onto the iron and try to apply the solder with the iron.

Do: Use a sponge to clean your iron whenever black oxidization builds up on the tip.

Solder flows around the leg and fills the hole - forming a volcano-shaped mound of solder.

Error: Solder balls up on the leg, not connecting the leg to the metal ring. Solution: Add flux, then touch up with iron.

Error: Bad Connection (i.e. it doesn't look like a volcano) Solution: Flux then add solder.

Error: Bad Connection ... and ugly ... oh so ugly. Solution: Flux then add solder.

Error: Too much solder connecting adjacent legs (aka a solder jumper). Solution: Wick off excess solder.

sparkfun.com

SOLDERING

SOLDERING

SOLDERING

Jumpers for Potentiometer Board Preparing PCB with jumpers.

SOLDERING

Jumpers for Potentiometer Board

SOLDERING

Preparing LED for soldering to the PCB.

Tin the LED lead and wire separately with a bit of solder. Hold both leads together then apply heat from soldering iron.

SOLDERING

3PDT Switch Soldering Preparing switch with jumpers.

SOLDERING

3PDT Switch Soldering

Prepare all the wires to be soldered onto the 3PDT switch.

SOLDERING

3PDT Switch Soldering Prepare IN/OUT Jack Wires for 3PDT switch.

SOLDERING

3PDT Switch Soldering

Get creative with positioning switch and wires for soldering

SOLDERING

3PDT Switch Soldering Prepared to be connected to the PCB and Jacks.

SOLDERING

Solder the Jacks & PCB to the 3PDT. Solder the LED to the PCB.

<u>imetchris.com</u> <u>chris.morris2@uleth.ca</u>

Download the presentation:

https://tinyurl.com/aemcon-pedal